

Received May 2016.

Volume 9, Number 2, 2016

JAVASCRIPT LIBRARY FOR DEVELOPING INTERACTIVE

MICRO-LEVEL ANIMATIONS FOR TEACHING AND LEARNING

ALGORITHMS ON ONE-DIMENSIONAL ARRAYS

Ladislav Végh

Abstract: The first data structure that first-year undergraduate students learn during the

programming and algorithms courses is the one-dimensional array. For novice programmers, it

might be hard to understand different algorithms on arrays (e.g. searching, mirroring, sorting

algorithms), because the algorithms dynamically change the values of elements. In these situations,

visualizations and animations might be helpful didactic tools. In this paper, we briefly overview

animations with different views and introduce our Javascript library for developing interactive

micro-level animations. Using this library, different sorting algorithm animations were created,

which were used in a pedagogical experiment. The results showed that our interactive animations

helped students to understand the visualized sorting algorithms.

Key words: developing algorithm animations, interactive animations, micro-level animations,

teaching programming, sorting algorithms

1. Introduction

Learning programming, solving algorithm problems, and gaining algorithmization thinking skills is

one of the hardest tasks for first-year computer science students. The main reason why algorithms are

hard to understand is that they work with abstract data structures and change the values of the

elements dynamically. Animations and visualizations might be helpful in learning process because

they represent abstract data by concrete objects (e.g. playing cards, wooden boxes, rectangles, balls,

lines), and they dynamically change the position (or other properties) of these objects.

Even though, that using animations are motivating for students and help them focus their attention on

the visualized processes [1, 2], they are not educationally effective in every case [3-8].

After ambiguous results of numerous pedagogical experiments, researchers started to investigate

features of didactically effective animations and visualizations. There are two broad categories of

attributes which should be taken into consideration for developing animations for teaching and

learning: graphical design and interactivity. Mayer [9] defined twelve principles of designing

multimedia learning materials, which describe how texts, voices, and images are recommended to use

for reducing extraneous processing, managing essential processing, and fostering generative

processing in multimedia learning materials. In the field of interactivity of algorithm animations were

also made some recommendations which deal with the control modes of the animations, possibilities

of modifying input data, questioning students during the animations, and possibilities of adapting the

animations to the level of students’ knowledge [2, 3, 10-14].

Hansen et al. [3] recommended to use three types of algorithm animations successively:

1. The first type of animations, with conceptual view, introduces the main ideas of the

algorithms, but it does not go into the details. These animations establish the understanding of

abstract concepts using real-world situations, e.g. sorting algorithms by using wooden boxes

or playing cards. Thus, students are encouraged to develop connections between real-life

events and the logic of the algorithms in the beginning of their learning process [10, 15].

24 Ladislav Végh

Acta Didactica Napocensia, ISSN 2065-1430

Furthermore, this type of animations also serves as motivation [3]. Examples of animations

with conceptual views are on the following web pages: http://bit.ly/1O1NoVh (sorting playing

cards), http://bit.ly/23tUUtS (using Lego bricks to demonstrate bubblesort algorithm),

http://bit.ly/1Tr8to6 (sorting wooden boxes), http://bit.ly/1q32o9V (solving eight queen

problem by backtracking), http://bit.ly/1WMXZF9 (using balls and robots to illustrate the

main steps of the mergesort algorithm).

2. The second, micro-level animations illustrate the algorithms in details, on small data sets –

usually on 6-8 elements. It is very common that this type of animations contains pseudocodes

or source codes, in which the actual steps of the algorithms are highlighted [3, 10, 11, 13]. If

the algorithms are taught during a programming course, where a given programming language

is used, it is recommended to display the source codes of the algorithms. Otherwise, it is better

to use the pseudocodes, because it contains a higher level of abstraction. Thus, students will

not get lost in details, and they will learn algorithms independently of any programming

language [11]. An example of animation with micro-level view can be found on

http://bit.ly/1O1R897 (simple exchange sort algorithm). In the next sections of this paper, we

will focus on this type of animations. We will present our Javascript library which can be used

to create micro-level animations. Some interactive animations created with our library are

available on the following web pages: http://bit.ly/1TvlqO0 (swapping two variables,

summing values of elements, mirroring an array, finding the minimum/maximum in an array,

or finding the index of the minimum/maximum in an array), http://bit.ly/26Z7ypl (simple

exchange sort, bubblesort, improved bubblesort, insertion sort, improved insertion sort,

minsort, and maxsort), http://bit.ly/24B9WjX (quicksort and mergesort algorithms).

3. The third, macro-level animations show the algorithms globally, on large data sets, usually on

20-50 elements. The details of the algorithms are hidden. Using these animations students can

understand and compare the effectiveness of different algorithms. Macro-level animations can

also enforce students’ mental models. An example of macro-level animations can be found on

http://bit.ly/1rZrubL (comparison of the running time of different sorting algorithms using

different types of input data sets).

As we mentioned before, in this article we will deal with the second type of algorithm animations. Our

goal was to develop micro-level animations for teaching and learning algorithms on one-dimensional

arrays. Undergraduate computer science students learn these algorithms during the first semester of

programming and algorithms courses. Because it is recommended to use animations with the same

kind of graphical representation and control buttons during the whole course [11], we decided to create

a Javascript library first (we called it “inalan” as an acronym from “interactive algorithm animations”).

Next, we developed interactive animations using this library. Thus, creating animations was easier,

and students had similar control buttons and graphical representation of the arrays in all animations.

Finally, we conducted a pedagogical experiment where our goal was to determine if our interactive

micro-level animations can help students to understand sorting algorithms in details.

2. Javascript library (inalan)

The inalan Javascript library (http://inalan.ide.sk) contains classes for developing interactive

animations of algorithms on one-dimensional arrays. The library uses the canvas element of the

HTML5 to display the animations. This technique enables students to watch the animations in web

browsers without the necessity of installing any plugin. The different parts of an animation developed

with the inalan library are shown in Figure 1.

http://bit.ly/1O1NoVh
http://bit.ly/23tUUtS
http://bit.ly/1Tr8to6
http://bit.ly/1q32o9V
http://bit.ly/1WMXZF9
http://bit.ly/1O1R897
http://bit.ly/1TvlqO0
http://bit.ly/26Z7ypl
http://bit.ly/24B9WjX
http://bit.ly/1rZrubL
http://inalan.ide.sk/

Javascript library for developing interactive micro-level animations for teaching and learning algorithms

on one-dimensional arrays 25

Volume 9 Number 2, 2016

Figure 1. Different parts of a micro-level animation developed with inalan library

There are three recommended modes to use this kind of animations:

• Students can play the whole animation continuously. The animation can be anytime stopped

and continued. Learners can reset the animation to the starting state and play the animation

again from the beginning. In this mode, it is suggested to concentrate only on the changes in

the representation of the array (green, red, or yellow columns). It is not recommended to

follow the pseudocode or source code because learners usually do not have enough time to

think about the algorithm in such details.

• In the second mode, students can use the double arrow (>>) button to play some related steps

of the algorithm. After animating these related steps, the animation stops automatically, and

students can think over the visualized steps. Next, they can continue with the following steps

(>>), or they can step backward (<<) and watch again the lastly animated steps.

• In the last, the most detailed mode, students can observe the visualization of the algorithm step

by step, using the single arrow (>) button. They can also step backward (<) whenever they

need. This is the best mode to follow and understand the pseudocode or source code of the

algorithm, as well.

Learners can change the values of elements during the animations by dragging the top of the red or

yellow columns. This feature can be used for experimenting with different data sets in different parts

of the algorithms. Students can run algorithm animations with their initial data; they can anytime stop

the animations, step backward, change the values of elements and observe the behavior of the

algorithms again with new data.

For developers of learning materials, the inalan Javascript library offers the following classes:

• class Stage – Every animation contains one object created from this class. This object connects

the Javascript code with the canvas element of the HTML5 document, controls the animation,

and draws different parts of the animation on the canvas.

26 Ladislav Végh

Acta Didactica Napocensia, ISSN 2065-1430

• class VisuVariable – An object of this class represents simple variable by an interactively

changeable red/green/yellow column.

• class VisuArray – Array of VisuVariable objects. An object of this class also contains index

and loop control variables, which can be displayed on the canvas.

• class VisuCode – Pseudocode or source code of the visualized algorithm with the possibility of

highlighting the actual steps of the algorithm.

• class VisuLabel – Simple textual comment. An object of this class can be used to display any

explanation or comment on the canvas of the animation.

• class VisuButton – Simple button. Objects of this class can be found in the bottom control

panel of the animation. Using this class, developers of interactive animations can add their

own buttons anywhere into the animation.

• class VisuScrollbar – Simple scrollbar. An object of this class can be found in the bottom

control panel for changing the speed of the animation.

The detailed documentation of classes with examples, their attributes and methods are available on the

wiki of the inalan library: https://github.com/veghl/inalan/wiki.

To create an interactive animation using the inalan library, first of all we need to create a canvas

element in HTML5 document, for example:

<canvas id="myCanvas" width="700" height="440"></canvas>

Next, we need to connect this canvas element to the Stage object in Javascript:

var stage = new inalan.Stage("myCanvas");

To create a VisuArray object and add it to the stage we can use the following Javascript code:

var a = new inalan.VisuArray("a", [0, 0, 0, 0, 0, 0, 0, 0], true);

a.randomize(30, 150);

a.x = 80;

a.y = 220;

stage.add(a, "a");

Similarly we can add VisuVariable, other VisuArray, VisuCode, VisuLabel, VisuButton, or

VisuScrollbar objects to the stage. Next, we need to define the steps of the animation and loop

conditions. Every step of the animation or condition of a loop is a function in Javascript, for example:

var setLoopControlVariable = function () {

stage.get("a").setIndex("i", stage.vars.i);

stage.get("a").setLoopMarker("i", 0, 3);

return 200;

}

var swapElements = function () {

stage.get("a").setIndex("7-i", 7 - stage.vars.i);

stage.swap(stage.get("a")[stage.vars.i],

stage.get("a")[7-stage.vars.i]);

}

var incrementLoopControlVariable = function () {

stage.get("a").deleteIndex("7-i");

stage.get("a")[stage.vars.i].setGreenColor();

stage.get("a")[7-stage.vars.i].setGreenColor();

stage.vars.i++;

https://github.com/veghl/inalan/wiki

Javascript library for developing interactive micro-level animations for teaching and learning algorithms

on one-dimensional arrays 27

Volume 9 Number 2, 2016

return 0;

}

var checkLoopControlVariable = function () {

return stage.vars.i <= 3;

}

var finalStep = function () {

stage.get("a").deleteIndex("i");

stage.get("a").deleteIndex("7-i");

}

The setLoopControlVariable, swapElements, incrementLoopControlVariable, and finalStep functions

define the steps of the algorithm animation. The return value of these functions are used to control the

animation depending on the animation mode:

• If the return value is -1, or the function does not have any return value (“undefined” value):

the animation will stop (in case the animated step was started using the >> or > button), or will

wait few milliseconds defined by the speed scrollbar on the right side of the control panel (in

case the animated step was started with the Play button).

• If the return value is 0: the animation will continue automatically with the next step, without

any stop or delay.

• If the return value is a positive integer: the animation will stop (in case the animated step was

started using the > button), or will wait few milliseconds defined by the return value (in case

the animated step was started with the >> or Play button).

The checkLoopControlVariable function defines the condition of a repeat loop. Its return can be a

boolean value. If this function returns a true value, some of the previous steps will be repeated, in

another case the animation will continue with the next steps.

Finally, we need to define the order of the steps, e.g.

stage.setSteps([

[

 setLoopControlVariable,

 swapElements,

 incrementLoopControlVariable

], checkLoopControlVariable,

finalStep

]);

In this example, the setLoopControlvariable, swapElements, and incrementLoopControlVariable

functions are used to animate the algorithm. This sequence of steps can be iterated depending on the

return value of the checkLoopControlVariable function. Finally, the finalStep function is called one

time to remove the index variable from the canvas of the animation when the algorithm ends.

Some interactive animations developed with the inalan Javascript library can be found on the web

pages: http://anim.ide.sk/basic_algorithms.php, http://anim.ide.sk/sorting_algorithms_1.php,

http://anim.ide.sk/sorting_algorithms_2.php.

3. Pedagogical experiment

Using our interactive animations we conducted a pedagogical experiment during the academic year

2015/16. The goal was to determine if our interactive animations help students to comprehend the

sorting algorithms easier than comprehend them with static pictures representing the main steps of the

algorithms. In the experiment were involved 71 first-year computer science students from J. Selye

University, Komárno, Slovakia. They were divided randomly into four study groups during the

http://anim.ide.sk/basic_algorithms.php
http://anim.ide.sk/sorting_algorithms_1.php
http://anim.ide.sk/sorting_algorithms_2.php

28 Ladislav Végh

Acta Didactica Napocensia, ISSN 2065-1430

„Algorithmization and programming” course. Before the experiment, all students filled out a pre-test,

in which we tried to assess students’ previous knowledge. Next, to learn sorting algorithms, two of the

study groups (35 students) used interactive animations, and the other two study groups (36 students)

used static pictures containing the main steps of the algorithms (see Figure 2). The experiment took

five weeks (5 × 1.5 hours) based on the following schedule:

• 1st week: pre-test, simple exchange sort, bubblesort,

• 2nd week: improved bubblesort, insertion sort, improved insertion sort,

• 3rd week: selection sort – minsort, maxsort,

• 4th week: quicksort,

• 5th week: mergesort.

Figure 2. Screenshot of the interactive animation of bubblesort algorithm, and a static picture containing the

main steps of the bubblesort algorithm

The interactive animations and graphical representations were completed with the teacher’s

explanation in voice. After the explanations, students had time to experiment with the animations, or

think over the steps of the algorithms represented by static images. They could ask questions for

clarification of the steps of the algorithms. Explaining the algorithms and answering the questions

usually took longer in the study groups where static pictures were used. When students did not have

any more questions, they were asked to fill out a test related to the given sorting algorithm.

4. Results

After the experiment, we examined the acquired results. The mean numbers, standard deviation, and

medians of the results in percentage are shown in Table 1.

Javascript library for developing interactive micro-level animations for teaching and learning algorithms

on one-dimensional arrays 29

Volume 9 Number 2, 2016

Table 1. Mean numbers, standard deviations, and medians of the results of the test in percentage

Results of students who used
INTERACTIVE ANIMATIONS

Results of students who used
STATIC PICTURES

N
Mean
(%)

Std. Dev.
(%)

Median
(%)

N
Mean
(%)

Std. Dev.
(%)

Median
(%)

PRETEST 34 59,56 23,501 58 33 53,24 24,276 50

SIMPLESORT 34 73,32 15,338 75 33 62,73 17,424 63

BUBBLESORT 34 88,09 14,154 88 33 80,55 16,216 88

BUBBLESORT2 31 77,97 16,353 75 34 52,12 25,156 50

INSERTSORT 31 87,26 12,223 88 34 81,12 13,906 88

INSERTSORT2 31 67,65 19,818 71 34 48,35 26,722 43

MINSORT 32 83,81 15,126 89 27 70,89 21,684 78

MAXSORT 32 84,94 16,679 88 27 78,89 18,352 88

QUICKSORT 30 83,77 15,110 82 23 71,35 15,683 73

MERGESORT 28 70,25 20,323 73 19 51,74 22,896 64

Shapio-Wilk tests showed that there is not normal distribution in the data, except the tests that

measured the understanding of the mergesort algorithm. For this reason, we used independent-samples

t-test to evaluate the results of the tests related to the mergesort algorithm, and Mann-Whitney U tests

to evaluate the results of other tests.

The Mann-Whitney U test showed that the distribution of the scores in pre-test for both groups were

similar, as assessed by visual inspection. Median score for students in the first group (58) and students

in the second group (50) was not statistically significantly different, U = 468, z = -1.173, p = 0.241.

The result of this test shows that students in both groups had similar previous knowledge.

Table 2 shows the results of Mann-Whitney U tests for different sorting algorithms.

Table 2. Results of Mann-Whitney U tests for different sorting algorithms

Sorting

algorithm

Is the

distributon

of points

similar in

groups?

Students using

INTERACTÍVE

ANIMÁTIONS

Students using

STATIC

PICTURES

Result

Simplesort no mean rank = 40.19 mean rank = 27.62 U = 350, z = -2.715, p = 0.007

Bubblesort no mean rank = 38.76 mean rank = 29.09 U = 399, z = -2.115, p = 0.034

Bubblesort2 no
mean rank = 43.29 mean rank = 23.62

U = 208, z = -4.245, p <

0.0005

Insertsort no mean rank = 37.03 mean rank = 29.32 U = 402, z = -1.713, p = 0.087

Insertsort2 no mean rank = 40.05 mean rank = 26.57 U = 308, z = -2.913, p = 0.004

Minsort no mean rank = 34.75 mean rank = 24.37 U = 280, z = -2.365, p = 0.018

Maxsort no mean rank = 32.91 mean rank = 26.56 U = 339, z = -1.467, p = 0.142

Quicksort no mean rank = 32.37 mean rank = 20.00 U = 184, z = -2.964, p = 0.003

30 Ladislav Végh

Acta Didactica Napocensia, ISSN 2065-1430

Distributions of the scores for students using interactive animations and students using static pictures

were not similar, as assessed by visual inspection. In most cases, except the insertion sort and maxsort

algorithms, the scores for students using interactive animations were statistically significantly higher

than for students using static pictures. For insertion sort and maxsort algorithms, there were not

statistically significant difference between the groups.

To evaluate the results of the tests related to the mergesort algorithm we used independent-samples t-

test (see Table 3).

Table 3. Results of Mann-Whitney U tests for different sorting algorithms

Group Statistics

 GROUP N Mean Std. Deviation Std. Error Mean

MERGESORT

animation 28 70,25 20,323 3,841

graphics 19 51,74 22,896 5,253

Independent Samples Test

MERGESORT

Levene's Test

for Equality of

Variances t-test for Equality of Means

F Sig. t df

Sig.

(2-tailed)

Mean

Diff.

Std.

Error

Diff.

95%

Confidence

Interval of the

Difference

Lower Upper

Equal variances

assumed

0,384 0,539 2,912 45 0,006 18,513 6,357 5,709 31,318

Equal variances not

assumed

2,845 35,607 0,007 18,513 6,507 5,311 31,715

There were no outliners in the data, as assessed by inspection of a boxplot. Scores for both groups

were normally distributed, as assessed by Shapiro-Wilk’s test (p>0.05), and there was homogeneity of

variance, as assessed by Levene’s test for equality of variances (p=0.539). Students who used

interactive animations to learn mergesort algorithm reached higher scores in test (mean: 70.25 ±

20.32) than students who used static graphics (mean: 51.74 ± 22.90), statistically significant difference

18.51 (95% CI, 5.71 to 31.32), t(45) = 2.912, p=0.006.

5. Conclusion

In conclusion, students who learned sorting algorithms using our interactive micro-level animations

got better results on tests than students who used static images. The results were statistically

significant for seven sorting algorithms, for two algorithms there was no statistically significant

difference between the groups.

Our experiences showed that our interactive micro-level animations can be used as helpful didactic

tools for teaching and learning algorithms on one-dimensional arrays. Students can change the values

of elements even run-time, so they can easily observe the behavior of different parts of the algorithms

on different data sets. The ability to move forward and backward anytime in the algorithms, using

different animating modes, gives even more possibilities to experience with the interactive animations.

References

[1] Young, J.R., Homework? What Homework? Students Seem to Be Spending Less Time Studying

Than They Used To. The Chronicle of Higher Education, 2002. 49(15), A35-A37.

Javascript library for developing interactive micro-level animations for teaching and learning algorithms

on one-dimensional arrays 31

Volume 9 Number 2, 2016

[2] Grissom, S., M.F. McNally, & Naps, T. (2003). Algorithm visualization in CS education:

comparing levels of student engagement. in Proceedings of the 2003 ACM symposium on

Software visualization. San Diego, California: ACM.

[3] Hansen, S., Narayanan, N.H. & Hegarty, M. (2002). Designing educationally effective algorithm

visualizations. Journal of Visual Languages and Computing, 13(3), 291-317.

[4] Hundhausen, C. & Douglas, S. (2000). Using visualizations to learn algorithms: Should students

construct their own, or view an expert's? 2000 Ieee International Symposium on Visual

Languages, Proceedings, 21-28.

[5] Hundhausen, C.D., Douglas, S.A. & Stasko, J.T. (2002). A meta-study of algorithm visualization

effectiveness. Journal of Visual Languages and Computing, 13(3), 259-290.

[6] Kehoe, C., Stasko, J. & Taylor, A. (2001). Rethinking the evaluation of algorithm animations as

learning aids: an observational study. International Journal of Human-Computer Studies, 54(2):

p. 265-284.

[7] Byrne, M.D., Catrambone, R. & Stasko, J.T. (1999). Evaluating animations as student aids in

learning computer algorithms. Computers & Education, 33(4), 253-278.

[8] Kann, C., Lindeman, R.W. & Heller, R. (1997). Integrating algorithm animation into a learning

environment. Computers & Education, 28(4), 223-228.

[9] Mayer, R.E. (2009). Multimedia Learning (second ed.). New York, USA: Cambridge University

Press. 304.

[10] Bernát, P. (2014). The Methods and Goals of Teaching Sorting Algorithms in Public Education.

Acta Didactica Napocensia, 7(2), 1-10.

[11] Fleischer, R. & Kucera, L. (2002). Algorithm animation for teaching. Software Visualization,

2269, 113-128.

[12] Naps, T. & Grissom, S. (2002). The effective use of quicksort visualizations in the classroom. J.

Comput. Sci. Coll., 18(1), 88-96.

[13] Naps, T. L., et al. (2002). Exploring the role of visualization and engagement in computer science

education. SIGCSE Bull., 35(2), 131-152.

[14] Végh, L. (2011). Animations in Teaching Algorithms and Programming (Animácie vo vyučovaní

algoritmov a programovania). in Nové technologie ve vzdělávání. 2011. Olomouc, CZ: Palacký

University, Olomouc.

[15] Rudder, A., Bernard, M. & Mohammed, S. (2007). Teaching programming using visualization.

Proceedings of the Sixth IASTED International Conference on Web-Based Education, 487-492.

Author

Ladislav Végh, J. Selye University, Komárno, Slovakia, e-mail: vegh34@gmail.com

mailto:vegh34@gmail.com

32 Ladislav Végh

Acta Didactica Napocensia, ISSN 2065-1430

